The possibility of simultaneous voltammetric determination of desloratadine and 3-hydroxydesloratadine.

نویسندگان

  • Mara M Aleksić
  • Valentina L Radulović
  • Vera P Kapetanović
  • Vladimir M Savić
چکیده

The electrochemical behaviour of desloratadine (DLOR) and its derivative 3-hydroxydesloratadine (3OH-DLOR) was investigated by direct current (DCP) polarography, cyclic (CV), differential pulse (DPV) and square-wave (SWV) voltammetry in Britton-Robinson (BR) buffer solutions (pH 4-11). Both compounds are reduced at mercury electrode in irreversible two electron reduction of the C=N bond of the pyridine ring in their molecules. The difference in their electrochemical behaviour was investigated, and the most pronounced distinction is observed at pH > 9, as a consequence of the deprotonation of the phenolic moiety in 3OH-DLOR molecule, yielding significant change in their reduction potentials (Ep DLOR = -1.48 V, and Ep 3OH-DLOR = -1.6 V). The observed results correlate with calculated LUMO energy levels and Hammet substituent constants (σ). Based on the difference in the reduction potential for DLOR and 3OH-DLOR, conditions for simultaneous determination these two molecules in alkaline medium were established. The best selectivity was achieved using SWV method at pH 10. The linearity of the calibration graphs were achieved in the concentration range from 1.5 × 10-6 M - 1 × 10-5 M for DLOR and 7.5 × 10-6 M - 5 × 10-5 M for 3OH-DLOR with detection limits of 2.29 × 10-7 M and 2.08 × 10-6 M, and determination limits of 7.64 × 10-7 M and 6.94 × 10-6 M, for DLOR and 3OH-DLOR, respectively. The method was checked in human plasma sample. Good response was obtained with LOD and LOQ values of 4.63 × 10-7 M and 1.54 × 10-6 M, for DLOR and 2.39 × 10-6 M and 7.97 × 10-6 M, 3OH-DLOR, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dmd065011 1294..1302

Desloratadine (Clarinex), the major active metabolite of loratadine (Claritin), is a nonsedating antihistamine used for the treatment of seasonal allergies and hives. Previously we reported that the formation of 3-hydroxydesloratadine, the major human metabolite of desloratadine, involves three sequential reactions, namely N-glucuronidation by UGT2B10 followed by 3-hydroxylation by CYP2C8 follo...

متن کامل

Dmd062620 523..533

Desloratadine (Clarinex), the major active metabolite of loratadine (Claritin), is a nonsedating long-lasting antihistamine that is widely used for the treatment of allergic rhinitis and chronic idiopathic urticaria. For over 20 years, it has remained a mystery as to which enzymes are responsible for the formation of 3-hydroxydesloratadine, the major active humanmetabolite, largely due to the i...

متن کامل

Borreliacidal activity of Borrelia metal transporter A (BmtA) binding small molecules by manganese transport inhibition

Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn) for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transp...

متن کامل

Simultaneous Voltammetric Measurement of Ascorbic Acid, Epinephrine, Uric Acid and Tyrosine at a Glassy Carbon Electrode Modified with Nanozeolite-Multiwall Carbon Nanotube

In this study, incorporation of iron ion-doped natrolite nanozeolite, multi-wall carbon nanotubes into chitosan-coated glassy carbon electrode for the simultaneous determination of ascorbic acid, epinephrine, uric acid and tyrosine is studied. The results show that the combination of multi-wall carbon nanotubes and iron ion-doped natrolite zeolite causes a dramatic enhancement in the sensitivit...

متن کامل

Simultaneous Voltammetric Determination of Ascorbic Acid and Uric Acid Using a Modified Multiwalled Carbon Nanotube Paste Electrode

This paper describes the development, electrochemical characterization and utilization of novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of ascorbic acid (AA). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of AA about 235 mV ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta chimica Slovenica

دوره 57 3  شماره 

صفحات  -

تاریخ انتشار 2010